2004 DOE Hydrogen, Fuel Cells and Infrastructure Technologies Program Review

MEA & Stack Durability for PEM Fuel Cells

3M/DOE Cooperative Agreement No. DE-FC36-03GO13098

Mike Hicks
Fuel Cell Components Program
3M Company
May 25, 2004

Objectives

Overall

- Determine root causes of MEA failure modes
- Develop an MEA with enhanced durability and maintain performance
 - Manufacturable in a high volume process
 - Meets market required targets for lifetime and cost
 - Optimized for field ready systems
- System demonstration >2000 hrs

Work to Date Focus

- MEA component development
- MEA characterization and diagnostics
- Defining system operating window

Budget

	Total \$	DOE \$	Contractor \$
Total	10,100,000	8,080,000	2,020,000
FY '04 Project Management Plan (12/03)	4,340,000	3,480,000	860,000
FY '04 Projected Allocation	2,690,000	2,150,000	540,000

Technical Barriers and Targets

- DOE Technical Barriers for Distributed Systems
 - E. Durability
- DOE Technical Barriers for Fuel Cell Components
 - O. Stack Material and Manufacturing Cost
 - P. Durability
- DOE Technical Target for Fuel Cell Stack System for 2010
 - Cost \$750 \$1,000/kW
 - Durability 40,000 hours

Approach

- Develop MEA utilizing 3M proprietary perfluorinated sulfonic acid ionomer which has demonstrated improved oxidative stability over baseline
- Develop and validate individual component aging tests and characterization methods
- Correlate single-cell test data and characterization data on virgin and aged components and MEAs leading to a more focused materials development strategy
- Optimize stack and/or MEA structure based upon modeling and experimentation
- Selectively test MEA and stack designs for enhanced system durability

Project Safety

- Corporate Policy and Procedures
 - Hazard review for new/modified facilities, equipment and processes
 - Risk assessment process for design and production of products
 - New Product Introduction system
 - Life Cycle Management
 - Change Management
- Test Station Safety
 - Emergency stop capabilities
 - Alarms
 - Over temperature and pressure protection
- No unusual safety issues have been encountered todate on this project.

Accomplishments

- Component Development
 - MembraneGDLImproved oxidative stability
 - Cathode catalyst test to select the most stable material
- MEA Diagnostics
 - Peroxide measurements key to understanding peroxide kinetics and impact on MEA durability
- System operating window
 - Defining operating window investigated dew point, cell temperature, current density

Note: Portion of data from DOE Program No. DE-FC36-02AL67621

CASE: Electrochemical H₂O₂ Co-generation Studies

Competing O₂ reactions: ORR

$$O_2 + 4e^- + 4H^+$$

$$\rightarrow 2H_2O$$

Hydrogen peroxide

$$O_2 + 2e^- + 2H^+$$

$$\rightarrow H_2O_2$$

Catalyst Hydrogen Peroxide Generation

Hydrogen Peroxide Diffusivity in Acid

Measured hydrogen peroxide diffusivity via RDE

- Kinetic model on peroxide effects
 Investigated 6 catalysts for hydrogen peroxide generation via RRDE
 - Variables: support, metal loading and vendor

Interactions and Collaborations

- Plug Power
 - Performance and durability testing of single cells, modules and stacks
 - System and stack design
- Case Western Reserve University
 - Characterization test method development
 - Ex-situ accelerated test method development
 - Characterization of virgin and aged components and MEAs
- University of Miami (Finalizing subcontract)
 - 3M modeling of cell and MEA

Future Work

Remainder of 2004

- Ongoing MEA component development
- Determine decay mechanisms and kinetic parameters
- Develop accelerated lifetime predictor tests
- Complete initial 3D model and segmented cell work
- Study interactions of system parameters on MEA durability

• 2005-2006

- Select MEA components
- Link accelerated test results to lifetime
- Develop and implement strategies to mitigate decay mechanisms
- System demonstration